fraciso Documentation

Release 0.0.1-dev

Jeffrey Finkelstein

April 01, 2014

Contents

This package provides functions that decide whether two graphs are fractionally isomorphic, as well as functions that generate graphs fractionally isomorphic to a given initial graph.

Source code (github.com) · Packaging (pypi.python.org) · Issues (github.com)

CHAPTER 1

Installation

pip install fraciso

Basic usage

```
from fraciso import are_fractionally_isomorphic
from fraciso import coarsest_equitable_partition
from fraciso import random_fractionally_isomorphic_graph
from networkx import Graph
# Create some NetworkX graphs.
G = Graph()
H = Graph()
#
# Add some vertices and edges to graphs G and H here...
#
# Decide whether two graphs are fractionally isomorphic.
print('Isomorphic?', are_fractionally_isomorphic(G, H))
# Use linear programming to decide whether they are fractionally isomorphic.
#
# This requires PuLP and GLPK to be installed.
print('Isomorphic?', are_fractionally_isomorphic(G, H, algorithm='lp.pulp'))
# Generate a random graph that is fractionally isomorphic to G.
J = random_fractionally_isomorphic_graph(G)
# Compute the coarsest equitable partition of a graph.
P = coarsest_equitable_partition(G)
```

Mathematical background

An undirected graph is a pair (V, E), where V is a set of vertices and E is a subset of $V \times V$. If we assume the graph has n vertices and $V = \{0, ..., n-1\}$, then the *adjacency matrix* of a graph is the matrix A in which entry A_{ij} is 1 if i is adjacent to j and 0 otherwise.

3.1 Graph isomorphism

Suppose A and B are the adjacency matrices of graphs G and H, respectively. The graphs G and H are *isomorphic* if the following linear program has a feasible solution.

$$AP = PB$$
$$P1 = 1$$
$$1TP = 1$$
$$P \in \{0, 1\}^{n \times n}$$

In other words, there is a permutation of the vertices of G that makes the adjacency matrices identical (any feasible P must be a permutation matrix).

3.2 Fractional graph isomorphism

The problem of determining whether two graphs are isomorphic is a computationally difficult problem. However, a relaxation of the graph isomorphism problem is computationally tractable. The *fractional graph isomorphism* problem is the problem of determining whether the following linear program has a feasible solution.

$$AS = SB$$
$$S1 = 1$$
$$1^{T}S = 1$$
$$S \ge 0$$

The final inequality is an abbreviation for the requirement that all entries of S must be real and nonnegative (so any feasible S must be a doubly stochastic matrix). This sole relaxation permits the problem to be solved in polynomial time (by any efficient linear programming algorithm).

Algorithms

Describe algorithms here.

4.1 Coarsest equitable partition

Describe coarsest equitable partition algorithm here.

4.2 Linear programming

Desrcibe linear programming algorithms here.

API

Python Module Index

f fraciso,??